β-lactamines: Lecture interprétative de l'antibiogramme

Pr ag. Boutiba-Ben Boubaker I. Laboratoire de Microbiologie Hôpital Charles Nicolle

INTRODUCTION

Lecture interprétative de l'antibiogramme

- 1- Caractérisation du phénotype de résistance (Choix judicieux des antibiotiques à tester: même famille, même classe)
- 2- Déduction du mécanisme biochimique par le phénotype observé
- 3- Prédiction des autres phénotypes de résistance par la connaissance du mécanisme
- Transformation d'un résultat initialement S en résultat I ou R en raison d'un risque d'échec thérapeutique

Pré requis

Classification ATB (β-lactamines)

- Résistances naturelles des différentes espèces
 - = Caractéristique propre à une espèce bactérienne
 - = Résistance de toutes les souches de cette espèce
 - = Définit le phénotype sauvage ou sensible de l'espèce

Résistance acquise

 Caractéristique de certaines souches au sein d'une espèce bactérienne

- Résulte d'une modification génétique :
 - * mutation
 - * plasmide ou autres éléments
- Définit des phénotypes "résistants"

LE CHOIX DES MOLECULES

MARQUEUR:

molécule qui, au sein d'un groupe d'antibiotiques est le plus régulièrement touchée

EQUIVALENCE:

ATB testé permettant d'étendre le résultat à d'autres molécules

VALIDATION DES RESULTATS

repose sur:

- 1. la COHERENCE entre antibiogramme et identification du germe
- 2. la DETECTION des phénotypes de résistance impossibles
- 3. la détection de L'ABSENCE d'une résistance associée
- 4. la RECHERCHE de résistances insuffisamment exprimées

R naturelles chez entérobactéries

Production de β -lactamases naturelles \rightarrow Groupes phénotypiques de résistance

Groupe 0: Espèces dépourvues de β-lactamases *Salmonella* spp et *P mirabilis*

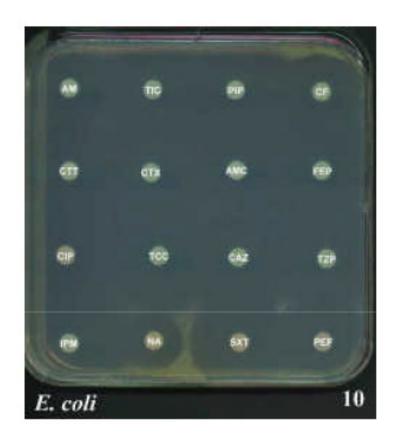
Groupe1: Production naturelle de céphalosporinase de classe C de très bas niveau *E coli* et *Shigella* spp

Groupe 2: Pénicillinase bas niveau → Klebsiella spp et C koseri

Groupe3: Céphalosporine de bas niveau

3 sous groupes selon comportement vis-à-vis C2G et céphamycines (Fox)

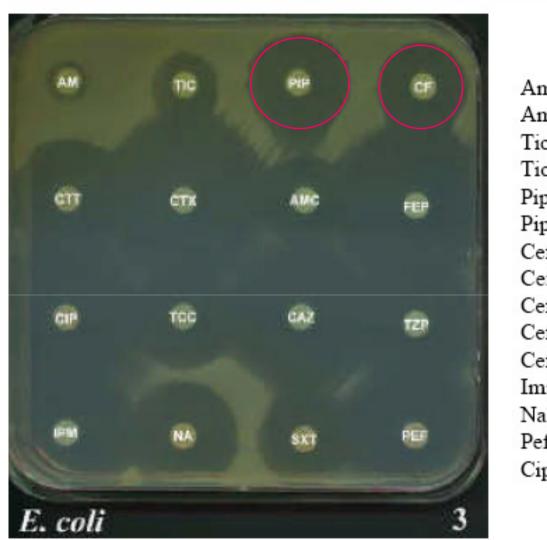
S C2G et S Fox: P rettgeri et P stuartii


R Fox > C2G: E cloacae, E aerogenes, C frendii

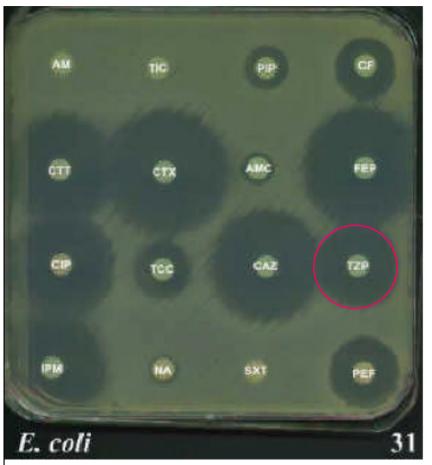
R C2G > Fox : S marcescens et M morganii

Groupe 4: céphalosporinase + pénicillinase: *Y enterocolitica*

Groupe 5: céfuroximase: *P vulgaris*

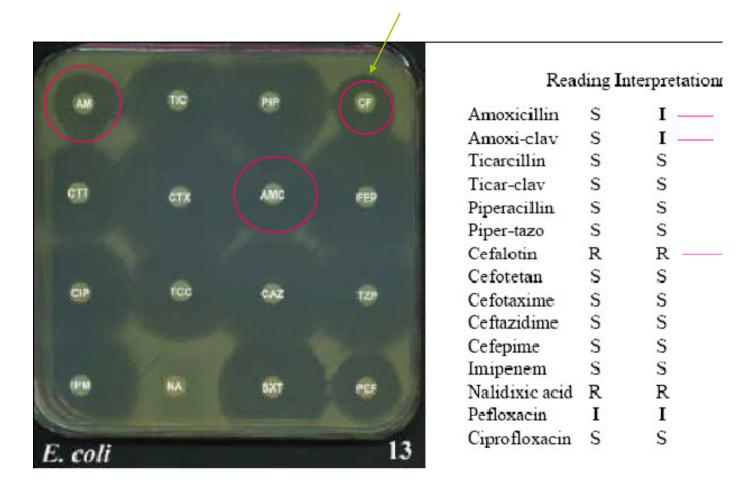

Groupe 6: BLSE chromosomique: *Kluyvera*

Reading Interpretation


Amoxicillin	S	S
Amoxi-clav	S	S
Ticarcillin	S	S
Ticar-clav	S	S
Piperacillin	S	S
Piper-tazo	S	S
Cefalotin	S	S
Cefotetan	S	S
Cefotaxime	S	S
Ceftazidime	S	S
Cefepime	S	S
Imipenem	S	S

 β -lactamines : phénotype sauvage

Read	ling I	nterpretation
Amoxicillin	R	R
Amoxi-clav	S	S
Ticarcillin	R	R
Ticar-clav	S	S
Piperacillin	S	I ——
Piper-tazo	S	S
Cefalotin	S	I ——
Cefotetan	S	S
Cefotaxime	S	S
Ceftazidime	S	S
Cefepime	S	S
Imipenem	S	S
Nalidixic acid	S	S
Pefloxacin	S	S
Ciprofloxacin	S	S

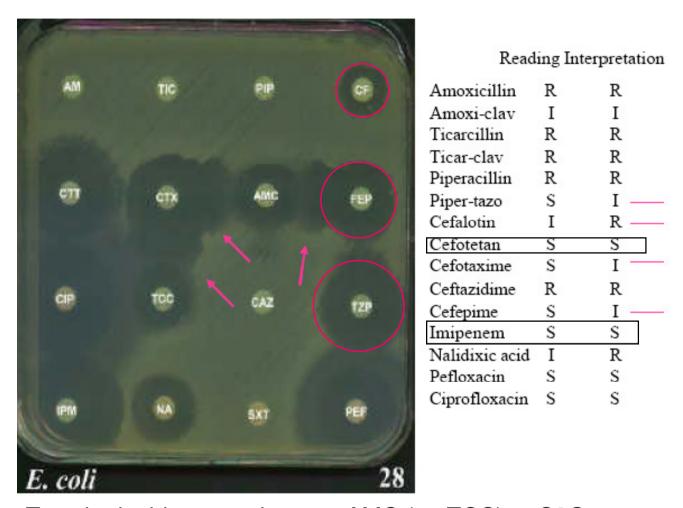

 β -lactamines: pénicillinase acquise

Reading Interpretation

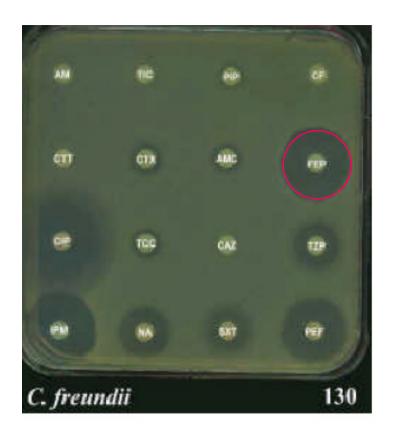
Amoxicillin	R	R
Amoxi-clay	R	R
Ticarcillin	R	R
Ticar-clay	R	R
Piperacillin	R	R
Piper-tazo	S	I
Cefalotin	I	I
Cefotetan	S	S
Cefotaxime	S	S
Ceftazidime	S	S
Cefepime	S	S
Imipenem	S	S
Nalidixic acid	R	R
Pefloxacin	I	I
Ciprofloxacin	S	S

TEM Resistant to β -lactamase Inhibitors = TRI / IRT (altération de la séquence de la β -lactamase de type TEM

B-lactamines: céphalosporinase de bas niveau

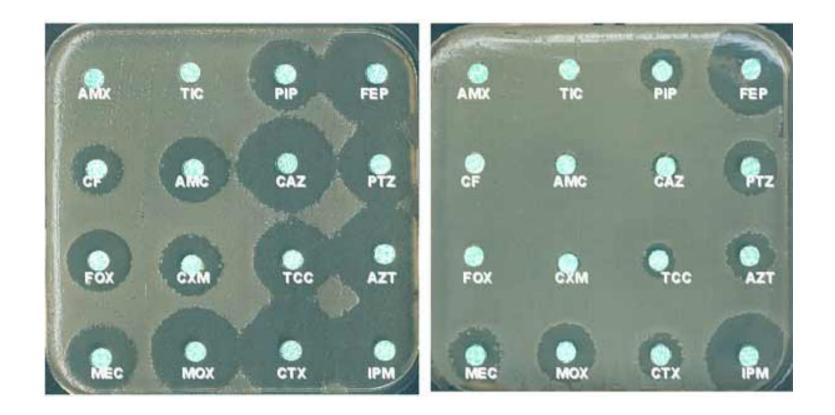

β-lactamases à spectre étendu BLSE

Pénicillinases


S à action IBL

 Hydrolysent toutes les β-lactamines sauf les céphamycines (cefotetan, céfoxitine, latamoxef) & carbapénèmes

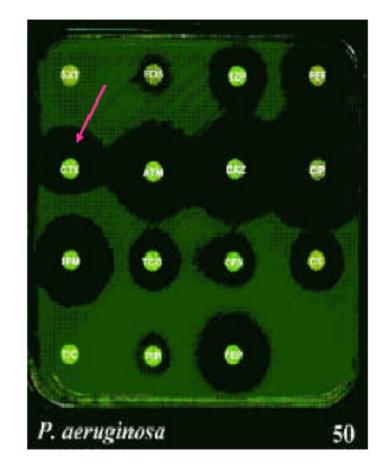
Détection des BLSE


Test de double synergie entre AMC (ou TCC) et C3G

Read	ding	Interpretation	
Amoxicillin	R	R	
Amoxi-clav	R	R	
Ticarcillin	R	R	
Ticar-clav	R	R	
Piperacillin	R	R	
Piper-tazo	R	R	
Cefalotin	R	R	
Cefotetan	R	R	
Cefotaxime	R	R	
Ceftazidime	R.	R	
Cefepime	S	I? —	Si BLSE
Imipenem	S	S	
Nalidixic acid	Ι	R	
Pefloxacin	S	S	
Ciprofloxacin	S	S	

β-lactamines: BLSE et/ou céphalosporinase

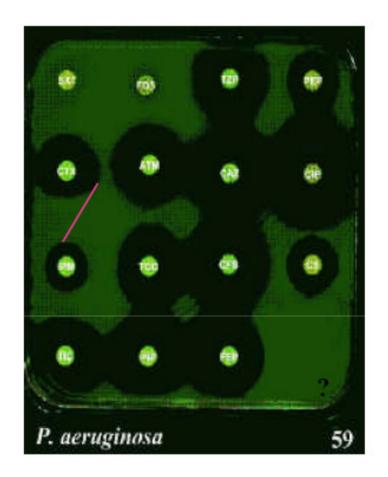
- → Refaire ATB sur gélose MH + 300 mg/L de cloxacilline (inhibiteur des Cases)
- →Révéler → image en bouchon de champagne → BLSE


E. coli, hyperproductrice de sa céphalosporinase chromosomique examinée sur milieu MH normal (à droite) et MH supplémentée en cloxacilline (300 mg/L) (à gauche) → inhibition de la céphalosporinase, le phénotype "pénicillinase" est clairement individualisé

Pseudomonas aeruginosa et β-lactamines Phénotype sauvage

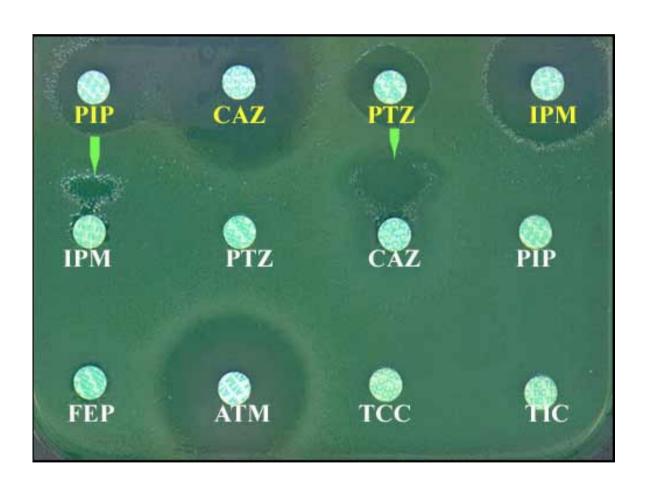
- * Résistances naturelles: Case chromosomique inductible
 - . Aminopénicillines; CIG, CIIG; certaines C3G
 - Phénicolés, tétracyclines, triméthoprime, quinolones IG

* Sensibilité:


- . Uréidopénicillines : pipéracilline
- . Carboxypénicilline : ticarcilline
- . CIIIG: ceftazidime,
- . CIVG: céfépime, cefpirome
- . Monobactam : aztréonam
- . Carbapénèmes : imipénème, méropénème

Reading Interpretation			
Ticarcillin	R	R	
Ticar-clay	I	I	
Piperacillin	R	R	
Piper-tazo	S	S	
Cefotaxime	S	R -	
Ceftazidime	S	S	
Cefsulodin	I	I	
Cefepime	S	S	
Aztreonam	S	S	
Imipenem	S	S	
Pefloxacin	S	S	
Ciprofloxacin	S	S	

R naturelle


 β -lactamines: Case + Pase acquise

Reading Interpretation

Ticarcillin	S	S
Ticar-clav	S	S
Piperacillin	S	S
Piper-tazo	S	S
Cefotaxime	S	S
Ceftazidime	S	S
Cefsulodin	S	S
Cefepime	S	S
Aztreonam	S	S
Imipenem	R	R —
Pefloxacin	S	S
Ciprofloxacin	S	S

β-lactamines: imperméabilité (porine D2) R isolée à l'imipénème *P. aeruginosa:* détection d'une carbapénémase de la classe B (VIM-2) par la méthode de diffusion (pour les antibiotiques en jaune, apport de 20 μl d'une solution de EDTA)(Guérin F. et al., JAC, 2005)

Acinetobacter baumannii et ß-lactamines

Résistances naturelles:

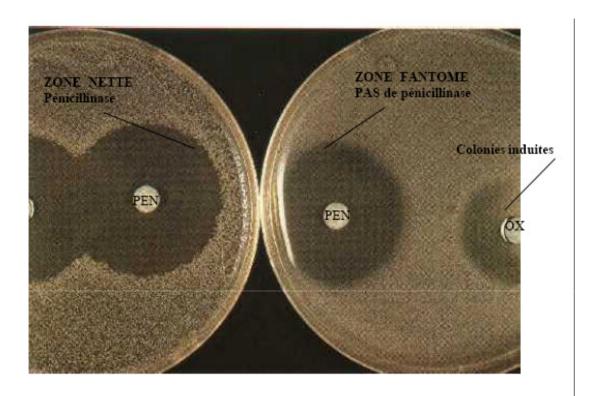
- Aminopénicillines, CIG, CIIG, certaines
 C3G (CTX et CRO)
- fosfomycine, triméthoprime, furanes

Acinetobacter baumannii et B -lactamines

PHENOTYPE	I	П	Ш	IV	V
Mécanisme	sauvage	Pase	Case	Pase + Case	Accumulation de mécanisme
TIC, PIP	S	R	S	R	R
C3G	S	S	R	R	R
ATM	S	S	R	R	R
IMP	s	S	S	S	R

Staphylococcus et β-lactamines

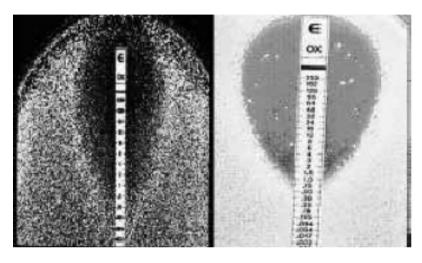
Naturellement S aux β-lactamines Quatre mécanismes de résistance acquise


- 1/ Production de pénicillinase: (fréquence +++)
- → résistance péniG, amino, carboxy, acyluréidopénicillines
- = Pase sensible aux inhibiteurs (acide clavulanique)
- 2/ Production d'une PLP2a codée par le gène mecA: (milieu hospitalier +++)
- \rightarrow résistance croisée avec toutes les β -lactamines
- 3/ Hyperproduction de β -lactamase = BORSA
- → souches résistantes à la méticilline mais les CMI diminuent en présence d'inhibiteurs (acide clavulanique)
- → résistance croisée avec toutes les pénicillines y compris la méticilline
- 4/ Modification des PLP= MODSA
- \rightarrow Touche de façon variable les différentes β -lactamines

Détection des pénicillinases

Diamètre Péni G >> D Avec production de pénicillinase

Résultat S → R péniG, amino, carboxy, acyluréidopénicillines



La détection de la béta-lactamase chez *S. aureus* n'est pas toujours facile et nécéssite une culture préalable induite en prélevant des colonies autour du disque d'oxacilline

Détection de la béta-lactamase par méthode acidimétrique : Les bandelettes de papier sont imprégnées de pénicilline et d'un indicateur de pH (pourpre de bromocrésol)

Détection de la résistance à la méticilline

Méthodes	R intrinsèque	BORSA	MODSA
Disque d'oxacilline MH à 30 ℃ ou MH hypersalé à37 ℃	R	BNR	BNR
Disque de céfoxitine	R	S ou I	S ou I
Association acide clavulanique	R	S	R
Screen test	+	-	-
СМІ	≥ 16 mg/l	4-16 mg/l	4-16 mg/l
Agglutination des PLP2a sur latex	+	-	-
Gène <i>mec</i> A	+	<u>-</u>	-

R homogène

R hétérogène

Même interprétation \rightarrow R croisée à toutes les β -lactamines

Pneumocoque et β-lactamines

B-lactamines: notion de sensibilité diminuée

→ Modification des Protéines de Liaison à la Pénicilline G (PLP)

Aucune	1 ou plusieurs PLP
Pneumocoque	Pneumocoque
sensible	de sensibilité diminuée
aux ß-lactamines	aux ß-lactamines

LECTURE INTERPRETATION

Oxacilline

R mma

Oxacillili

Diamètre Oxa (5μg) < 25mm Oxa (1μg) <20 mm Détermination des CMI de:
Penicilline G
Amoxicilline
Céfotaxime/ceftriaxone
(Imipénème)

	S	I	R	
		BNR	HNR	
Pénicilline G	\leq 0.06	0.125-1	> 1	
Autres β-lactamines	\leq 0.5	1-2	> 2	

^{*} Si méningite \rightarrow I = R

Haemophilus influenzae et β-lactamines

- R par production de β-lactamase constitutive (TEM-1 plasmidique)
 - R amino & carboxyP, restituée par IBL
 - Détection: céfinase avant antibiogramme

 Vue l'hétérogénéité de répartition plasmidique → tester plusieurs colonies

- Altération structurale d'une ou de plusieurs PLP
 - BNR aminoP, CIG et IMP et IBL
 - Détection: disque amp (2 μ g): Φ < 20mm

N. meningitidis et β -lactamines

- * La détection d'une sensibilité diminuée aux pénicillines est effectuée en routine à l'aide d'un disque d'oxacilline (1 µg ou 5 µg) selon les critères suivants :
- oxa 1 μ g \geq 11 mm ou oxa 5 μ g \geq 18 mm, souche sensible aux pénicillines
- oxa 1 μg < 11 mm ou oxa 5 μg < 18 mm, sensibilité diminuée à la pénicilline G et/ou amoxicilline à confirmer par la détermination des CMI.
- * La résistance à haut niveau aux pénicillines par production de β-lactamase est extrêmement rare. Elle est détectée par une technique chromogénique

N. gonorrhoeae et β-lactamines

• La production de β -lactamase doit être détectée par une technique chromogénique dès l'isolement. Elle confère la résistance aux amino, carboxy et uréido-pénicillines. Et est restaurée lors de l'association avec IBL

 La détection d'une sensibilité diminuée aux pénicillines sera effectuée en routine par détermination de la CMI de la pénicilline G sur gélose chocolat PolyViteX

CONCLUSION

ANTIBIOGRAMME +++ \$\bigsir \text{DIALOGUE}\$ BIOLOGISTE & CLINICIEN

• AIDE À L'ANTIBIOTHERAPIE :

Du fait:

- de l'évolution du nombre de molécules
- de l'évolution des résistances

INFORMATIONS EPIDEMIOLOGIQUES

Production «états épidémiologiques» par germe, par service, par type de prélèvement (par hôpital + études multicentriques)

☼ Meilleure connaissance de l'environnement local pour une antibiothérapie probabiliste optimisée