

Caractérisation moléculaire de la résistance plasmidique aux quinolones chez des souches d'*Escherichia coli* productrices de β-lactamases à spectre étendu

S. Ferjani², M. Saidani M ¹⁻², A. Slim¹⁻², I. Boutiba-Ben Boubaker¹⁻², ¹⁻ Laboratoire de Microbiologie - Hôpital Charles Nicolle - Tunis ²⁻Laboratoire de Recherche "Résistance aux Antimicrobiens"-Faculté de Médecine de Tunis

INTRODUCTION

✓ La résistance aux fluoroquinolones (FQ) chez les entérobactéries est classiquement chromosomique (Hopkins KL et al, Int J Antimicrob Agents. 2005):

- Modification de la cible (mutations des gènes gyrA et parC)
- Diminution de la concentration intracellulaire des FQ:
 - Imperméabilité membranaire
 - Hyper expression des pompes à efflux actif (AcrAB-TolC/ AcrR ou MarA)

 ✓ Depuis 1998, émergence et diffusion d'une résistance plasmidique aux quinolones (RPQ), en particulier chez les entérobactéries productrices de β-lactamases à spectre étendu (BLSE) (Rodríguez-Martínez JM et al, J Infect Chemother, 2011).

 Substitution des codons: Trp102Arg /Asp179Tyr (Robicsek A et al, Nat. Med, 2006)

Bas niveau de résistance aux fluoroquinlones

- Détecter et identifier les différents mécanismes de RPQ
- Etudier leur transférabilité
- Rechercher lien de clonalité

Chez 40 souches, consécutives et non redondantes, d'*E. coli* productrices de BLSE isolées à l'hôpital Charles Nicolle de Tunis, en 2010

Identification bactériologique: Méthodes conventionnelles & Api 20E (bioMérieux)

* Étude de la sensibilité aux antibiotiques (selon les recommandations du CLSI):

- Antibiogramme: Méthode de diffusion en milieu gélosé
- > Détection des BLSE: Test de double synergie
- > Détermination des CMI des FQ: Méthode de dilution en milieu solide

Méthodes:

Identification des RPQ:

qnrA, qnrB, qnrC, qnrD, qnrS, aac(6')-Ib-cr, qepA, et oqxAB

Mutations chromosomiques associées: gyrA et parC

Identification des β-lactamases associées:

 bla_{TEM} , $bla_{\text{CTX-M}}$ et bla_{SHV}

PCR suivies de séquençage

Typage moléculaire: Electrophorèse en champs pulsé (ECP) après macrorestriction

avec Xbal [analyse par le logiciel FP-Quest (BioRad)]

Transfert de la résistance:

- Conjugaison en milieu liquide: souche de référence *E. coli* J53-2
- 9 souches représentatives de chaque profil ECP

Fig3. Pourcentages de résistance aux antibiotiques

Fig4. Profil électrophorétique du produit d'amplification du gène *aac(6')-Ib*.

1: Marqueur de taille (100pb); 2: : témoin positif *aac(6')-lb* (480pb) ; **4, 5, 6, 8 et 10** : *aac(6')-lb* (+); **3, 7 et 9**: *aac(6')-lb* (-)

✓ RPQ concernait 50% (n=20) de nos souches

Fig5. Profil électrophorétique du produit d'amplification des gènes *qnrA*, *qnrB* and *qnrS*

 Marqueur de taille (ΦX174); 2: témoin positif *qnrA* (580pb); 3: témoin positif *qnrS* (428pb); 4: témoin positif *qnrB* (264pb); 5,6 et 7: souches *qnr B* (+)

aac(6′)-Ib-cr (+)	qnr B1 (+)	qnr B1 (+)/aac(6′)-Ib-cr (+)
17 (42,5%)	1 (2,5%)	2 (5%)

Conformément aux données de la littérature
 Prédominance du variant aac(6')-Ib-cr / qnrB1 chez E. coli (Karah N et al, Diagn Microbiol Infect Dis, 2010)

Niveau de résistance aux FQ des souches hébergeant la RPQ

	Acide nalidixique 16 - 32*	Norfloxacine 4 -16*	Ciprofloxacine 1 - 4*
CMI ₅₀ (µg/mL)	512	128	64
Valeurs limites (µg/mL)	4-1024	0,25-256	0,06-128

* Valeurs critiques

		CMI (µg/mL)				
	Souches (n=5)	Acide nalidixique	Norfloxacine	Ciprofloxacine		
		16 - 32*	4 -16*	1 - 4*		
S	EC4 (aac(6')-lb-cr)	oifficulté de la détection	on phénotyp	ique des RPQ		
S	EC23 (qnr B1 /aac(6')-Ib-cr)	nteret de leur typage n	noleculaire	0,5		
S	EC28 (aac(6')-Ib-cr)	8	0,12	0,06		
	EC30 (qnr B1)	16	0,12	0,12		
	EC36 (<i>aac(6')-Ib-cr</i>)	4	0,25	0,06		

✓ Bas niveau de résistance aux FQ/ gènes natifs gyrA-parC

✓ Toutes les souches RPQ (+) 𝔅 bla_{CTX-M-15.}

bla_{CTX-M-15} est fréquemment associé avec la RPQ, cependant leur l'association avec d'autres types de BLSE tel que SHV, LAP, TLA et VEB a été rapportée (Rodríguez-Martínez JM, J Infect Chemother, 2011).

Le transfert réussi pour 2 souches sur 9

Marqueurs de résistance et gènes de β-lactamases des souches donatrices et de leurs transconjugants (Tc)

Souches	Gènes RPQ	bla _{CTX-M-15}	Autres marqueurs de résistance	CMI (μg/mL)		
				NA	NOR	CIP
EC5	qnr B1	+	TM-GM-NET-AN-TE-C-NA-NOR-CIP-SXT	512	128	64
Tc EC5	qnr B1	+	TM-GM-TE-C-SXT-RIF	8	0,5	0,06
EC40	aac(6′)-Ib-cr/qnrB1	+	TM-GM-NET-NA-NOR-CIP-SXT-RIF	512	128	64
Tc EC40	aac(6')-Ib-cr/qnrB1	+	TM-GM-NET-RIF	32	4	1
J53	-	-	RIF	4	0,03	0,007

TM : tobramycine, GM : gentamicine, NET : nétilmicine, AN : amikacine, TE : tétracycline, C : chloramphénicol, NA : acide nalidixique, CIP : ciprofloxacine, NOR : norfloxacine et SXT : triméthoprime-sulfaméthoxazole

Dice (Opt10.00%) (Tol 1.0% 1.0%) (H>0.0% S>0.0%) (0.0% 100.0%) PFGE E coli

PFGE E coli

✓ Les 20 souches RPQ (+): 9 profiles

Solutionale des souches

Fig6. Dendrogramme des profiles ECP

Conclusion:

- Fréquence élevée de RPQ, parmi les *E. coli* productrices de BLSE aac(6')-Ib-cr +++
- Association fréquente:
 Mutations chromosomiques (topoisomérases)
 bla_{CTX-M-15}
- Par ailleurs, nos résultats confirment l'importance de la détection du bas niveau de résistance aux FQ, afin de prévenir sélection de mutants hautement résistants

Ce qui contribue à préserver ces molécules

MERCI