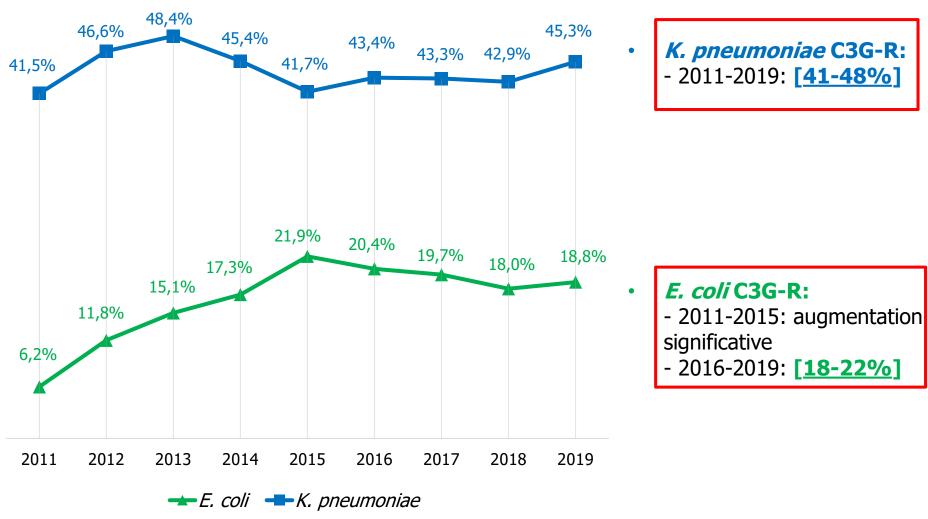
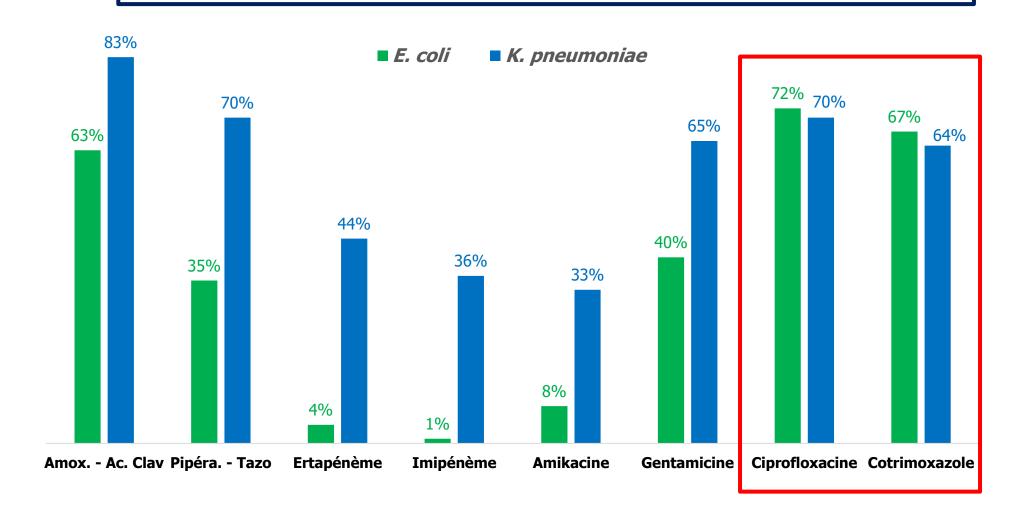
Antibiothérapie des infections urinaires à E-BLSE : Carbapénèmes, What else ?

Pr Wissem HACHFI


Service de Maladies Infectieuses CHU Farhat Hached de Sousse Faculté de Médecine de Sousse


Résistance des entérobactéries aux C3G en Tunisie

Prévalence des entérobactéries C3G-R

LART 2019

Entérobactéries C3G-R en Tunisie Taux de résistances associées en 2019

La résistance des Entérobactéries aux C3G en ville

Antimicrobial stewardship and economic evaluation of urinary tract infection management in primary health care in Tunisia

SKANDER ESSAFI^{1, A-G}, AMEL OMEZZINE LETAIEF

 Etude descriptive transversale, auprès de 76 médecins généralistes (secteur privé 75%) à Sousse, sur 3 mois en 2019

• 159 IU documentées d'origine communautaire prises en charge en médecine

de ville

70 cystites 28 IUM 13 PNA

E. coli (69,8%),
 K. pneumoniae (9,4%)

	Tableau XX : Profil de résistance global aux antibiotiques des principaux germes en cause (n=159)					
	Résistance	E. coli (%)	K. pneumoniae (%)	Non testé (%)	Total germes N (%)	
	Amoxicilline	60 (57,1)	11 (84,6)	9 (5,7)	90 (61,6)	
	Amox-acide clav	49 (46,2)	7 (9)	9 (5,7)	72 (49,3)	
	Céfotaxime	12 (12,4)	3 (21,4)	17 (10,7)	27 (19,6)	
	Ciprofloxacine	11 (10,4)	5 (37,5)	27 (17)	25 (19,5)	

La résistance des Entérobactéries aux C3G en ville

Antimicrobial stewardship and economic evaluation of urinary tract infection management in primary health care in Tunisia SKANDER ESSAFI^{1, A-G}, AMEL OMEZZINE LETAIEF

Etude descriptive transversale, auprès de 76 médecins généralistes (secteur privé 75%) à Sousse, sur 3 mois en 2019

159 IU documentées d'origine communautaire prises en charge en médecine

de ville

70 cystites 28 IUM 13 PNA

E. coli (69,8%),

K.	pneumoniae (9,4%)

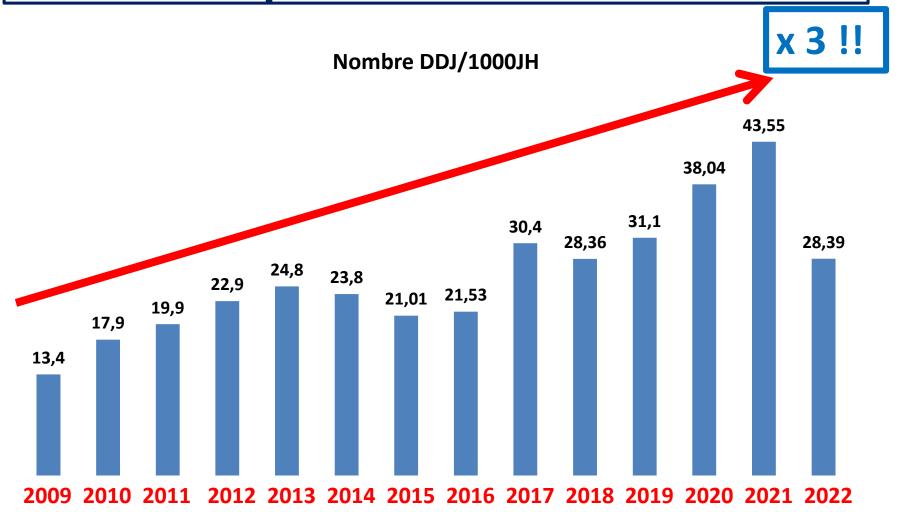
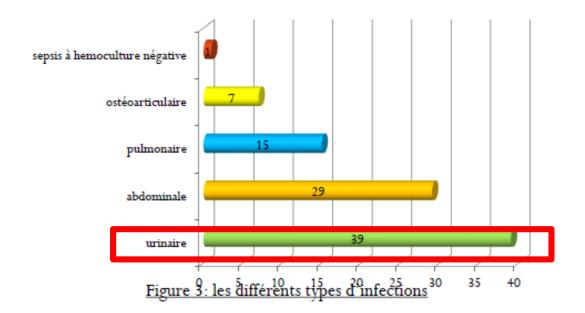

Rce aux C3G ++ > 10%

Tableau XX : Profil de résistance global aux antibiotiques des principaux germes en cause (n=159)				
Résistance	E. coli (%)	K. pneumoniae (%)	Non testé (%)	Total germes N (%)
Amoxicilline	60 (57,1)	11 (84,6)	9 (5,7)	90 (61,6)
Amox-acide clav	49 (46,2)	7 (9)	9 (5,7)	72 (49,3)
Céfotaxime	12 (12,4)	3 (21,4)	17 (10,7)	27 (19,6)
Ciprofloxacine	11 (10,4)	5 (37,5)	27 (17)	25 (19,5)

Rce associée


- . 34% à la ciprofloxacine
- 29% à la SMX-TMP

Consommation des carbapénèmes à l'hôpital Farhat Hached

Usage des carbapénèmes à l'hôpital

- Etude prospective, CHU de Monastir (aout à octobre 2017)
- 92 prescriptions de carbapénèmes était notifiée
- Infection documentée dans 25 cas (27,4%): E. coli BLSE +++ (n=20)
- La prescription était justifiée dans 55 cas (59,7%)

URINES

ANTIBIOGRAMME

Germe: Klebsiella pneumoniae ssp pneumoniae

Antibiotiques	Résultats	CMI (mg/l)	Concentrations critiques (mg/I
Ampicilline	Résistant	>=32	8-8
Amoxicilline/Acide clavulanique	Résistant	>=32	8-8
Ficarcilline Figure 1	Résistant	>=128	8-16
Piperacilline	Résistant		8-16
Piperacilline/Tazobactam	Résistant	>=128	8-16
Cefalexine	Résistant	>=64	16-16
Cefoxitine	Résistant	>=64	8-16
Cefotaxime	Résistant	>=64	1-2
Ceftazidime	Résistant	>=64	1-4
Ertapeneme	Résistant	>=8	0,5-1
mipeneme	Résistant	>=16	2-8
Amikacine	Résistant	>=64	8-16
Gentamicine	Résistant	>=16	2-4
Ciprofloxacine	Résistant	>=4	0,25-0,5
Trimethoprime/Sulfamethoxazole	Résistant		40-80
Fosfomycine IV	Résistant	>=16	
Colistine	Résistant	32	2-2

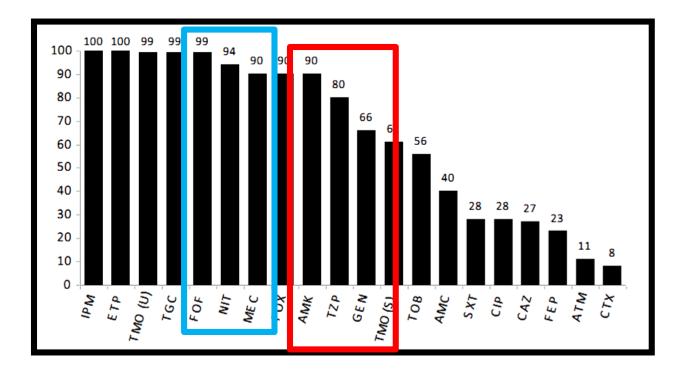
Pourquoi les alternatives des carbapénèmes dans les IU?

- Augmentation spectaculaire de
 - . E-BLSE dans les IU
 - . Rce associée ++
- Escalade : consommation de carbapénèmes +++
- Sélection et émergence de EPC

Pourquoi les alternatives des carbapénèmes dans les IU?

- Augmentation spectaculaire de
 - . E-BLSE dans les IU
 - . Rce associée ++
- Escalade : consommation de carbapénèmes +++
- Sélection et émergence de EPC
- Menace majeure pour la santé publique
- Intérêt de stratégie d'épargne des carbapénèmes

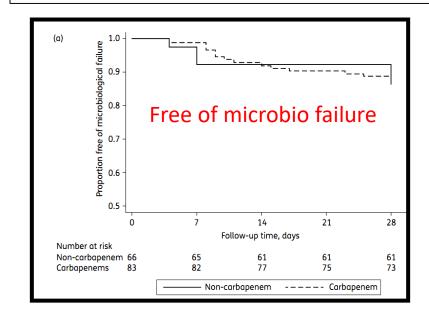
(à réserver aux formes graves)

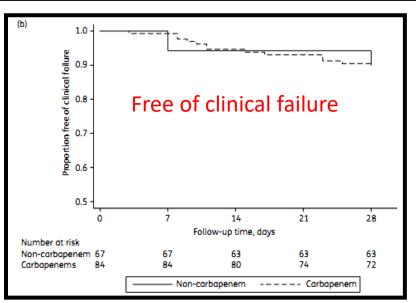


Alternatives aux carbapénèmes ? IU à E-BLSE

In vitro, quelles alternatives?

Alternatives to carbapenems in ESBL-producing *Escherichia coli* infections


- Étude de cohorte, rétrospective, monocentrique, hôpital français 2009-10
- Étude de l'activité des ATBs non-carbapénèmes (sensibilité,
 CMI) sur 100 souches E. coli BLSE issues d'IU



In vivo, alternatives efficaces?

The efficacy of non-carbapenem antibiotics for the treatment of community-onset acute pyelonephritis due to extended-spectrum \(\beta\)-lactamase-producing Escherichia coli

- Étude de cohorte rétrospective, monocentrique, hôpital coréen 2007-2013
- Efficacité de tts non-carbapénèmes dans les IU communau à E. coli à BLSE
- **152 adultes**, IU documentée : <u>85</u> carbapénèmes, <u>67</u> non carbapénèmes (aminoglycosides (30), b-lactam/b-lactamase inhibitors (13), fluoroquinolones (12) and trimethoprim/sulfamethoxazole (5))

Park S H, et al. JAC 2014

Traitement des cystites à E-BLSE?

- Carbapénèmes : déconseillées, épargne
- FQs: Rce associée ++, épargne
- TMP-SMX : Rce associée
- Efficacité des molécules de référence ?
 - Pivmecillinam
 - Fosfomycine
 - Furanes
 - Amox-ac clav
 - Autres: aminosides,...

Pivmecillinam

Efficacy of Pivmecillinam for Treatment of Lower Urinary Tract Infection Caused by Extended-Spectrum β-Lactamase–Producing Escherichia coli and Klebsiella pneumoniae

- 8 patients, cystites
- E. coli ou K. pneumoniae BLSE
- Guérison clinique pour tous les patients
- Guérison microbiologique: 2/8

Fosfomycine trométamol

Community Infections Caused by Extended-Spectrum **B**-Lactamase-Producing Escherichia coli

- Etude observationelle, multicentrique (11 hopitaux, Espagne, 2002-2003)
- 28 patientes avec cystite communautaire à E-BLSE, traitées avec fosfomycine-trometamol (3 g, 1 dose)
- Taux de guérison clinique : 26/28 (93 %)

Fosfomycin in the treatment of extended spectrum beta-lactamase-producing *Escherichia coli*-related lower urinary tract infections

- Etude rétrospective, à Izmir, entre 2004 et 2006
- **52 adultes :** une dysurie ou pollakiurie ou d'urgenturie
- E. coli BLSE traités par fosfomycine trométhamine (3 g à J1, J3 et J5)

Succès clinique et microbiologique (7 à 9 jrs après la fin du tt): 94,3 % (49/52) et de 78,5 % (41/52)

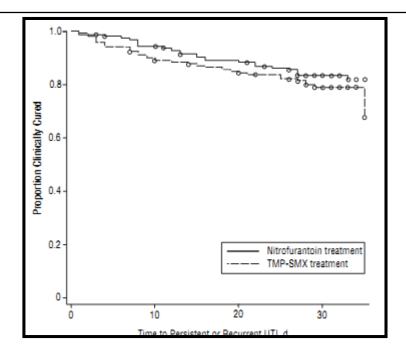
Furanes

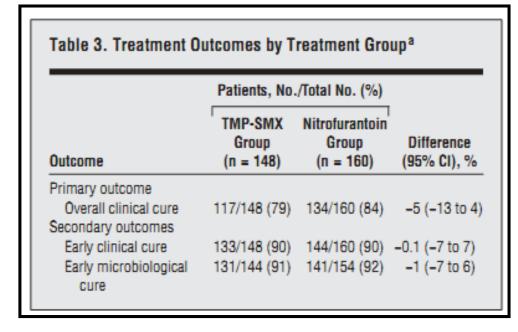
IAMA | Original Investigation

Effect of 5-Day Nitrofurantoin vs Single-Dose Fosfomycin on Clinical Resolution of Uncomplicated Lower Urinary Tract Infection in Women

A Randomized Clinical Trial

- Essai clinique randomisée,
- <u>513</u> femmes non enceintes, <u>cystite</u>
- Randomisation selon un rapport 1:1
 - . nitrofurantoïne orale, 100 mg 3x/j x5 jours (n = 255)
 - . fosfomycine orale, une dose unique de 3 g (n = 258)
- Evaluation clinique et microbio à J14 et J28


	No./Total No. (%)			
Clinical and Bacteriologic Outcome	Nitrofurantoin (n = 255)	Fosfomycin (n = 258)	Difference, % (95% CI)	P Value
Primary Outcome				
Clinical response at 28 d ^b				
Clinical resolution	171/244 (70)	139/241 (58)	12 (4-21)	.004
Clinical failure	66/244 (27)	94/241 (39)		
Indeterminate	7/244 (3)	8/241 (3)		
Missing ^c	11 (4)	17 (7)		
Secondary Outcomes				
Clinical response at 14 d				
Clinical resolution	184/247 (75)	162/247 (66)	9 (1-17)	.03
Clinical failure	56/247 (23)	75/247 (30)		
Indeterminate	7/247 (3)	10/247 (4)		
Missing ^c	8 (3)	11 (4)		
Microbiologic response at 28 d ^b				
Culture obtained/baseline culture positive	175/194 (90)	163/183 (89)		
Bacteriologic success through 28 d	129/175 (74)	103/163 (63)	11 (1-20)	.04
Bacteriologic success failure by 28 d	46/175 (26)	60/163 (37)		
Microbiologic response at 14 d				
Culture obtained/baseline culture positive	177/194 (91)	165/183 (90)		
Bacteriologic success through 14 d	146/177 (82)	121/165 (73)	9 (0.4-18)	.04
Bacteriologic success failure by 14 d	31/177 (18)	44/165 (27)		


Furanes

Short-Course Nitrofurantoin for the Treatment of Acute Uncomplicated Cystitis in Women

Kalpana Gupta, MD, MPH; Thomas M. Hooton, MD; Pacita L. Roberts, MS; Walter E. Stamm, MD

- Essai clinique randomisé, 338 femmes, 18-45 ans, cystite aiguë non compliquée
- Traitement soit par triméthoprime-sulfaméthoxazole, 1 cp (800 mg) x 2/j pdt 3 jrs soit par nitrofurantoïne, 100 mg x 2/j pdt 5 jours

Amoxicilline-Acide clavulanique

Community Infections Caused by Extended-Spectrum **B-Lactamase-Producing** Escherichia coli

- Etude observationelle, multicentrique (11 hopitaux, Espagne, 2002-2003)
- 37 patientes avec cystite communautaires à EBLSE, traités avec amoxicilline—clav (500 mg/125 mg/8 h, 5 à 7j)
- Taux de guérison clinique : 31/37 (84 %)
- L'echec : 26/28 [93 %] CMI ≤ 8 μg/mL vs 5/9 [56 %]

Jundishapur J Microbiol. 2015 January; 8(1): e13792.	DOI: 10.5812/jjm.13792
Published online 2014 December 6.	Research Article
Oral Amoxicillin-Clavulanic Acid Treatment in Urinary Caused by Extended-Spectrum Beta-Lactamase-Producing	
Ali Beytur ^{1,*} ; Yusuf Yakupogullari ² ; Fatih Oguz ¹ ; Baris Otlu ² ; Halim Ka	ysadu ²

Etude rétrospective, Turquie

K. pneumoniae

K. oxytoca

- 23 patients, Cystite à E-BLSE traitées par Amox-Ac clav
- Succès clinique (87%) et microbio (95%)

Table 1. Outcomes of the Amoxicillin-Clavulanic Acid Treatment According to the Infection Types and the Infecting Organisms

Therapy Responses

Microbiologic Response Clinical Cure No Response

Cystitis (n = 23)

E. coli 15 15 -

Beytur A et al.

• CMI > 8 mg/mL était associé à un échec thérapeutique (p=0,0001)

6

Aminosides

A Systematic Review of Single-Dose Aminoglycoside Therapy for Urinary Tract Infection: Is It Time To Resurrect an Old Strategy? Antimicrobial Agents

Kellie J. Goodlet, Fatima Z. Benhalima, Michael D. Nailor

- Revue systématique de 13 études évaluant le traitement par <u>aminosides</u>
 à dose unique pour les infections urinaires (13 804 patients)
- Le taux de guérison microbiologique (aminosides à dose unique) était de 94,5 % +/- 4,3 %
- Pas de récidive à J30 : pour 73,4 % +/- 9,6 % des patients
- EI = 63/13 804 (0,5 %) néphrotoxicité, toxicité vestibulaire ou de réaction au site d'injection (aucun cas de surdité)

Aminosides dose unique cystite à E-BLSE

Semble être une option de traitement efficace, avec peu de toxicité

A envisager : . en absence d'alternative per os

. en absence d'Ice rénale

Des données robustes, essais cliniques nécessaires

Traitement des cystites à E-BLSE?

- Cystite E-BLSE : <u>Pas de carbapénème</u>
 Pas de FQs en 1^{ère} intention
- Molécules à privilégier :
 - Furanes ++
 - TMP-SMX
 - Fosfomycine (E. coli seulement)
 - Pivmecillinam (peu de données !!)
 - Amox-ac clav (prudence !!, microbiote)
 - Aminosides dose unique (pas d'alternatives per os),...

Traitement des PNA et IUc à E-BLSE?

- Carbapénèmes : Tt de référence <u>formes graves</u>, état de choc +++
- FQs, TMP-SMX +++
- Efficacité et place des autres molécules?
 - Céphamycines
 - Témocilline
 - Céfépime
 - BL-IBL : Pipér-tazo, amox-ac clav
 - Aminosides
 - Fosfomycine

Céphamycines

- Céphamycines, bêta-lactamine, très proche des céphalosporines, développée dans les années 1970
- Très vite remplacé par C3G
- Bonne stabilité à l'hydrolyse par les BLSE
- Bonne activité in vitro sur Ec-BLSE à partir des cultures d'urine

Céphamycines / E-BLSE

 Modèles murins : Efficacité similaire de Céfoxitine vs carbapénèmes sur infections urinaires

Lapeule et al. AAC 2012

 Cas d'échec de traitement par Céfoxitine d'infection à K. pneumoniae TEM-3 par mutation de porine (diminution de la perméabilité)

Pangon et al. JID 1989

Lee et al. JAC 2007

Céphamycines

 Six études observationnelles rétrospectives, IU ou bactériémie d'origine urinaire à E-BLSE: résultats cliniques similaires entre céphamycines et carbapénèmes

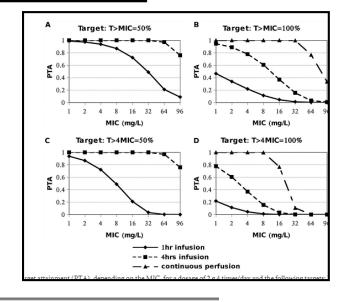
Lee CH et al. J Antimicrob Chemother 2006
Doi A et al. Int J Infect Dis 2013
Matsumura Y et al. Antimicrob Agents Chemother 2015
Fukushi T et al. BMC Infect Dis 2016
Senard O et al. Eur J Clin Microbiol Infect Dis 2020

- Deux études avec de moins bons résultats :
 - . 57 bactériémies à K. pneumoniae, la mortalité à J14 jours :
 - 55 % céphamycine et 39 % carbapénème

Yang CC, et al. BMC Infect Dis 2012

. 380 bactériémies à *E. coli* et *K. pneumoniae*, la **mortalité à J30 : 29 % céphamycine et 13 % carbapénème**

Lee CH et al. International Journal of Antimicrobial Agents 2015


PK/PD céfoxitine

Pharmacological Study of Cefoxitin as an Alternative Antibiotic Therapy to Carbapenems in Treatment of Urinary Tract Infections Due to Extended-Spectrum-β-Lactamase-Producing *Escherichia coli*

- Un modèle pharmacologique et les CMI à partir de PNA
- Probabilité d'atteindre les cibles pharmaco de:

CC° > CMI 50% et 100%

TABLE 2 Probability of pharmacological success

	Duration of	% of strains with pharmacological success by target ^a				
Dosage	infusion	T>MIC = 50%	T>MIC = 100%			
2 g 4 times/day	1 h	92	22			
2 g 4 times/day	4 h	100	76			
8 g/day	Continuous	100	100			

⁴ The probability of target attainment was calculated with all strains susceptible to cefoxitin according to antimicrobial

PK/PD céfoxitine

Pharmacological Study of Cefoxitin as an Alternative Antibiotic Therapy to Carbapenems in Treatment of Urinary Tract Infections Due to Extended-Spectrum-β-Lactamase-Producing *Escherichia coli*

- En utilisant un modèle
 pharmacologique et les CMI à partir de PNA
- Les probabilités d'atteindre les cibles pharmaco de:

CC° > CMI 50% et 100%

TABLE 2 Probability of pharmacological success

	Duration of infusion	% of strains with pharmacological success by target ^a				
Dosage		T>MIC = 50%	T>MIC = 100%			
2 g 4 times/day	1 h	92	22			
2 g 4 times/day	4 h	100	76			
8 g/day	Continuous	100	100			

^a The probability of target attainment was calculated with all strains susceptible to cefoxitin according to antimicrobial

Efficacy of cefoxitin versus carbapenem in febrile male urinary tract infections caused by extended spectrum beta-lactamase-producing *Escherichia coli*: a multicenter retrospective cohort study with propensity score analysis

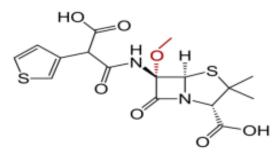
- Etude de cohorte retrospective multicentrique, 6 hopitaux français, 2013-2015
- Infection urinaire masculine fébrile à E. coli BLSE

• 23 patients <u>cefoxitine</u> (6 g/j en continue) vs 27 patients carbapénème

Utilisation modèle de régression logistique multivariée

Efficacy of cefoxitin versus carbapenem in febrile male urinary tract infections caused by extended spectrum beta-lactamase-producing *Escherichia coli*: a multicenter retrospective cohort study with propensity score analysis

- Etude de cohorte retrospective multicentrique, 6 hopitaux français, 2013-2015
- Infection urinaire masculine fébrile à E. coli BLSE
- 23 patients <u>cefoxitine</u> (<u>6 g/j en continue</u>) <u>vs</u> 27 patients <u>carbapénème</u>


	Number (%)	Crude OR [95%CI]	p value	Adjusted OR [95%CI] ^a	p value
Clinical success	N = 39/50)				
Carbapenem	22/27 (81.5)	l (ref)		1 (ref)	
Cefoxitin	17/23 (73.9)	0.64 [0.17; 2.47]	0.52	0.90 [0.12; 6.70]	0.92
Microbiological	success $(N = 17/3)$	1)		Pas de différence	ce significa
Carbapenem	6/12 (50.0)	l (ref)		l (ref)	
Cefoxitin	11/19 (57.9)	1.38 [0.32; 5.88]	0.67	0.85 [0.05; 14.00]	0.91

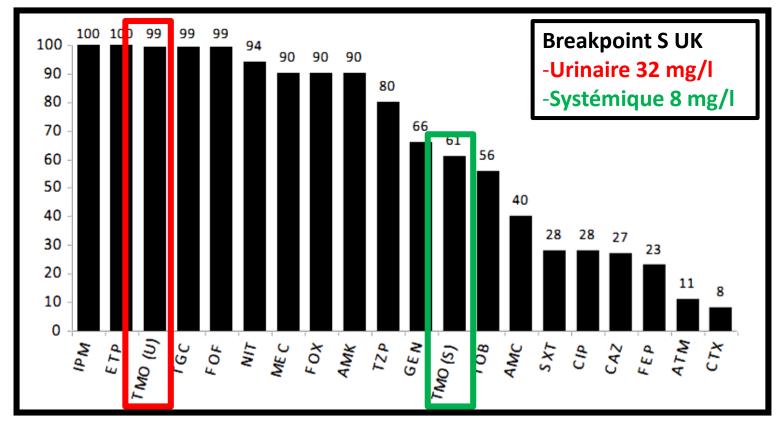
Recommandations Céfoxitine / IUc à E-BLSE

PNA et IUc à E-BLSE	HAS 2019	IDSA 2021	ESCMID 2022
Céfoxitine	Oui, E. coli BLSE (Grade C)	NON	NON
	Poso élevée (100 mg/kg/j, < 8 g/j) en perf prolongée ou continue		

Témocilline

- **Pénicilline dérivée de la ticarcilline** : 6-α-methoxy-ticarcillin
- Actif sur les BGN (entérobactéries +++)
- Stable vis-à-vis des ß-lactamase grâce à un groupe 6-α-methoxy (BLSE, AmpC,...)
- Diffusion urinaire excellente
- Impact écologique faible +++

Temocillin revived

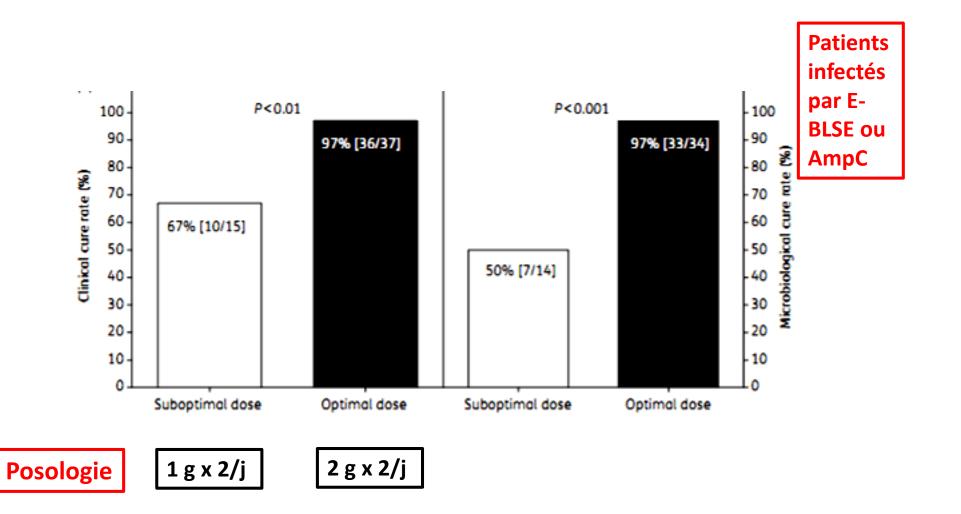

David M. Livermore^{1*} and Paul M. Tulkens²

Livermore DM JAC 2009; 63: 243

Vallée M, et al. Progrès en urologie 2017

Alternatives to carbapenems in ESBL-producing *Escherichia coli* infections

- Étude de cohorte, rétrospective, monocentrique, hôpital français 2009-10
- Étude de l'activité des ATBs non-carbapénèmes (sensibilité,
 CMI) sur 100 souches E. coli BLSE issues d'IU

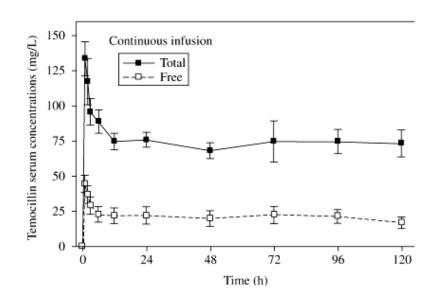

Temocillin use in England: clinical and microbiological efficacies in infections caused by extended-spectrum and/or derepressed AmpC β-lactamase-producing Enterobacteriaceae

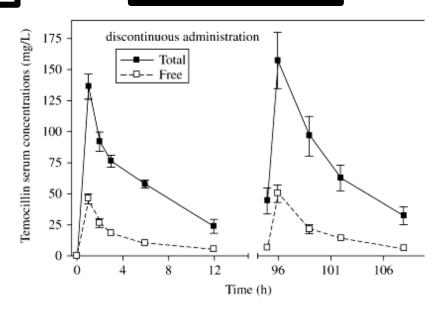
- Etude de cohorte rétrospective multicentrique (Six hôpitaux UK), 2008-2010
- 92 adultes (≥ 3 jrs de témocilline): 42 ITU, 42 bactériémie, 8 pneumonie à E-Rtant aux C3G

Variable	UTI	BSI	HAP	Total
Clinical cure ^a				
ESBL/dAmpC negative	6/7 (86%)	15/18 (83%)	4/5 (80%)	25/30 (83%)
ESBL/dAmpC positive	26/28 (93%)	19/23 (83%)	2/2 (100%)	47/53 (89%)
Total ^b	38/42 (90%)	35/42 (83%)	6/8 (75%)	79/92 (86%)
Microbiological cure ^a				
ESBL/dAmpC negative	6/7 (86%)	9/11 (82%)	4/5 (80%)	19/23 (83%)
ESBL/dAmpC positive	23/27 (85%)	18/22 (82%)	no data	41/49 (84%)
Total ^b	34/39 (87%)	28/34 (82%)	4/6 (67%)	66/79 (84%)

Taux élevé de guérison clq et microbio

Temocillin use in England: clinical and microbiological efficacies in infections caused by extended-spectrum and/or derepressed AmpC β-lactamase-producing Enterobacteriaceae

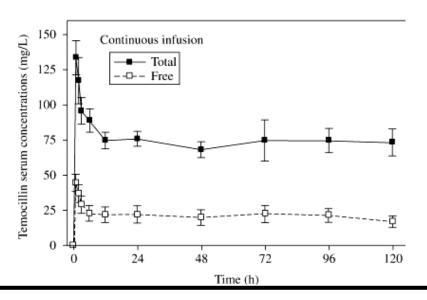

PK/PD de la témocilline

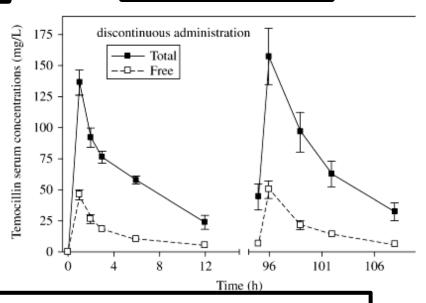

a directed Continuous versus intermittent infusion of temocillin spectrum penicillin for intensive care patients with nosocomial pneumonia: stability, compatibility, population pharmacokinetic studies and breakpoint selection

Patients de réa: 4 g/j (n=6) en Continu

VS

2 g x 2/j (n=7)


PK/PD de la témocilline

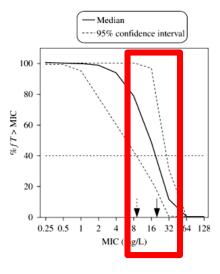

Continuous versus intermittent infusion of temocillin a directed spectrum penicillin for intensive care patients with nosocomial pneumonia: stability, compatibility, population pharmacokinetic studies and breakpoint selection

Patients de réa: 4 g/j (n=6) en Continu

VS

2 g x 2/j (n=7)

Guérison:


100%

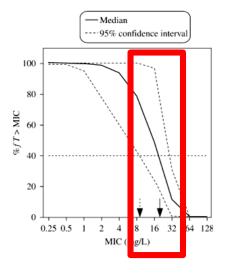
VS

85,7%

Continuous versus intermittent infusion of temocillin, a directed spectrum penicillin for intensive care patients with nosocomial pneumonia: stability, compatibility, population pharmacokinetic studies and breakpoint selection

- Analyse pharmacocinétique avec simutalion Monte Carlo
 - **→** Témocilline 2g x 2/j : CC° > CMI = 16 mg/l, 40% du temps !!

De Jongh JAC 2008


Continuous versus intermittent infusion of temocillin, a directed spectrum penicillin for intensive care patients with nosocomial pneumonia: stability, compatibility, population pharmacokinetic studies and breakpoint selection

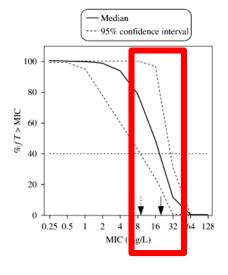
- Analyse pharmacocinétique avec simutalion Monte Carlo
 - Témocilline 2g x 2/j : CC° > CMI = 16 mg/l, 40% du temps

Modèle animal:

- fT>CMI à 40% (corrélée à un effet bactériostatique)
- fT>CMI à 80% (corrélée à un effet bactéricide)

Soubirou et al. JAC 2015

De Jongh JAC 2008


Continuous versus intermittent infusion of temocillin, a directed spectrum penicillin for intensive care patients with nosocomial pneumonia: stability, compatibility, population pharmacokinetic studies and breakpoint selection

- Etude et analyse pharmacocinétique avec simutalion Monte Carlo
 - **→** Témocilline 2g x 2/j : CC° > CMI = 16 mg/l 40% du temps

Modèle animal:

- fT>CMI à 40% (corrélée à un effet bactériostatique)
- fT>CMI à 80% (corrélée à un effet bactéricide)

Soubirou et al. JAC 2015

De Jongh JAC 2008

Poso de 6 g/24 h en continue : fT de 99 % avec CC° sérique > CMI
 (CMI = 16 mg/L)

Recommandations Témocilline / IUc à E-BLSE

PNA et IUc à E-BLSE	HAS 2019	IDSA 2021	ESCMID 2022
Témocilline	OUI	-	-
	. 4 à 6 g/j . Signes de gravité : 6 g/j en perf contin (2 g, dose de charge)		Pas de données suffisantes

Céfépime

Randomized controlled trial of piperacillintazobactam cefepime and ertapenem for the treatment of urinary tract infection caused by extended-spectrum betalactamase-producing *Escherichia coli*

- Essai contrôlé randomisé
- Efficacité du <u>céfépime</u>, <u>PTZ et de l'ertapénème</u> (10 à 14 jrs) dans IU fébriles à <u>E. coli BLSE</u> (S in-vitro aux 3 ATBs)
- 3 hôpitaux entre 2013 et 2015
- 66 participants
- Groupe céfépime, interrompue après 6 patients recrutés
- Taux d'échec élevé de céfépime (2 g x 2/j en IV), malgré que souches avec CMI 1-2 mcg/mL

Cefepime versus carbapenems for the treatment of urinary tract infections caused by extended-spectrum β -lactamase-producing enterobacteriaceae

- Etude retrospective, adultes avec <u>IUc à E-BLSE</u>, traités par <u>céfépime</u> ou <u>carbapénème</u> entre 2014 et 2017
- 106 patients : 17 céfépime (2g x 3/j IV) et 89 carbapénème

MIC category	n (%)				
	Cefepime (n = 17)	Carbapenems (n = 89)			
≤2 µg/mL	16 (94)	50 (56)			
4-8 μg/mL	1 (6)	17 (19)			
≥16 µg/mL	0(0)	22 (25)			

- Pas d'echec clinique, ni microbio
- Pas de rechute (suivi de 30 jours): 0 patients céfépime

6 patients traités par carbapénème

Recommandations Céfépime / IUc à E-BLSE

PNA et IUc à E-BLSE	HAS 2019	IDSA 2021	ESCMID 2022
Céfépime	NON	NON	NON
	(AmpC: oui, 4-6 g/j)	(Cystite avec évolution favorable : oui)	

Piperacillin-tazobactam

JAMA | Original Investigation

Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With *E coli* or *Klebsiella pneumoniae*Bloodstream Infection and Ceftriaxone Resistance
A Randomized Clinical Trial

 L'étude MERINO : un essai multinational, randomisé et contrôlé de patients bactériémie à E-BLSE

• Pipéracilline/tazobactam (PTZ) vs méropénème dans le traitement définitif des bactériémies à entérobactéries résistantes aux C3G mais sensibles à PTZ

 Moralité à J30 significativement plus élevée chez patients PTZ vs Méropénème : 12,3% (23/187) vs 3,7% (7/191)

MAJOR ARTICLE

Association Between Minimum Inhibitory Concentration, Beta-lactamase Genes and Mortality for Patients Treated With Piperacillin/Tazobactam or Meropenem From the MERINO Study

- Analyse post-hoc
- Les souches isolées d'HC au cours de l'essai MERINO rassemblées dans un labo de référence pour mesurer la CMI par méthode de microdilution (MD),
- Comparaison des CMI par MD à celles du Vitek2 et de la méthode des disques
- Analyse multivariée avec régression logistique pour évaluation de l'augmentation du risque de mortalité

MAJOR ARTICLE

Association Between Minimum Inhibitory Concentration, Beta-lactamase Genes and Mortality for Patients Treated With Piperacillin/Tazobactam or Meropenem From the MERINO Study

- La mauvaise fiabilité des tests de routine
 (Vitek2, antibiogramme par diffusion en gélose, Etest) pour la détection de la sensibilité à PTZ / la méthode de MD
- Une association significative entre CMI de PTZ (>16 mg/L en MD) et mortalité
- Après exclusion des souches avec CMI > 16 mg/L,
 Risque de mortalité à J30 passe de <u>9% à 5%</u> (IC95% -1 à 10%)

Role of piperacillin/tazobactam as a carbapenem-sparing antibiotic for treatment of acute pyelonephritis due to extended-spectrum β-lactamase-producing Escherichia coli

- Etude de cohorte rétrospective, un hôpital coréen (2011-2013)
- 150 adultes, PNA à E. coli BLSE
- 68 pipera/tazo (4 g/500 mg/8h) vs 82 ertapénème (1 g/j)
- Efficacité clinique (critère composite : mortalité hospitalière, changement d'antibiotique ou échec d'éradication bactérienne)
 - Pas de différence en efficacité clinique

Is Piperacillin-Tazobactam Effective for the Treatment of Pyelonephritis Caused by Extended-Spectrum β-Lactamase–Producing Organisms?

- Etude observationnelle multicentrique, utilisant un score de propension
- PTZ (n=47) vs Carbapénème (n=141)
- PNA à E-BLSE sans bactériémie
- La CMI PTZ était de 2 mg/L en médiane dans le groupe PTZ (IQR 2-8).

Is Piperacillin-Tazobactam Effective for the Treatment of Pyelonephritis Caused by Extended-Spectrum β-Lactamase–Producing Organisms?

- Etude observationnelle multicentrique, utilisant un score de propension
- PTZ (n=47) vs Carbapénème (n=141)
- PNA à E-BLSE sans bactériémie

Pas de différence sur : - la guérison clinique à J7

- la mortalité à J3

- <u>le taux de rechute à J30</u>

 Taux d'isolement de BGN résistants aux CP sur les prélèvements cliniques à J60 : PTZ, 1 patient (2%) << CP 11 patients (8%), (p=0,09) Randomized controlled trial of piperacillintazobactam, cefepime and ertapenem for the treatment of urinary tract infection caused by extended-spectrum betalactamase-producing *Escherichia coli*

- Essai clinique contrôlé randomisé (2013-2015)
- 66 patients, PNA ou IUc à E. coli-BLSE
- 33 patients pipera-tazo 4,5 g/6h vs 33 patients Ertapénème 1 g/j
- <u>Efficacité clinique et microbio similaire</u> : 94% TZP , 97% ertapénème
 - Non infériorité de TZP pour PNA ou IUc à *E. coli-*BLSE

Recommandations Pipéracilline-tazobactam / IUc à E-BLSE

PNA et IUc à E-BLSE	HAS 2019	IDSA 2021	ESCMID 2022
Pipéracilline- tazobactam	Oui	Non	Oui
	Sans signes de gravité (CMI non nécessaire)	Le risque d'echec faible avec P/Taz pour PNA !!	Sans signes de gravité
	16 g/24h Perf prolongée ou continue (après 4 g sur 30 min)	Si commencé pour cystite, avec évolution favorable: poursuivre!!	

Amoxicilline-acide clavulanique

β-Lactam/β-Lactam Inhibitor Combinations for the Treatment of Bacteremia Due to Extended-Spectrum β-Lactamase–Producing *Escherichia coli*: A Post Hoc Analysis of Prospective Cohorts

- Analyse des résultats de 6 cohortes prospectives
- Bactériémie à E. coli-BLSE Ilaire à une IU ou biliaire
- BLBLI IV (amox-ac clav ou pipéra-tazo) vs carbapénème
- Critère de jugement était la mortalité à J7, J14 et J30.
- Amoxicilline-acide clavulanique: 73/126
 - Pas de différence significative de mortalité entre BLBLI et carbapénèmes

Recommandations Amox-Ac clav / IUc à E-BLSE

PNA et IUc à E-BLSE	HAS 2019	IDSA 2021	ESCMID 2022
Amoxivilline-Ac clavulanique	Oui	-	Oui
	PNA simple, <u>sans</u> <u>signes de gravité</u> à <i>E. coli</i> BLSE		Sans signes de gravité
Traitement initial en perfusion	2 g/200 mg x 3/j		
En relai oral d'une antibiothérapie parentérale efficace	1 g/200 mg x 3/j		
Grade	(AE)		(moderate certainty of evidence)

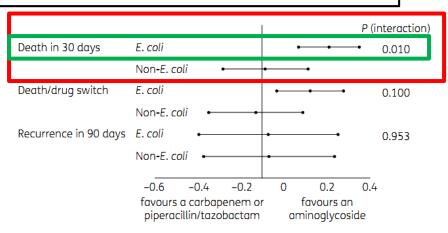
Aminosides

Aminoglycoside versus carbapenem or piperacillin/tazobactam treatment for bloodstream infections of urinary source caused by Gram-negative ESBL-producing Enterobacteriaceae

- Etude rétrospective de 193 patients, IUc (PNA, urosepsis +/-bactériémie) à E-BLSE
- Aminoside (n=108) vs carbapénème ou pipéra/tazo (n=85)
- Critères de jugement: mortalité à J30, Sce créat (IRA à J14)
- L'âge moyen était de 79,3 ans

Aminoglycoside versus carbapenem or piperacillin/tazobactam treatment for bloodstream infections of urinary source caused by Gram-negative ESBL-producing Enterobacteriaceae

- Etude rétrospective de 193 patients, ITU (PNA, urosepsis +/-bactériémie) à E-BLSE
- Aminoside (n=108) vs carbapénème ou pipéra/tazo (n=85)
- Critères de jugement: mortalité à J30, Sce créat (IRA à J14)
- L'âge moyen était de 79,3 ans


Outcome	Aminoglycoside (N=108), n (%)		Non-adjusted OR (95% CI)
30 day mortality 30 day mortality or treatment	14 (13.0) 26 (24.1)	18 (21.2) 22 (25.9)	0.55 (0.26-1.19) 0.91 (0.47-1.75)
switch Recurrence of bacteriuria	22 (48.9)	17 (44.7)	1.18 (0.50-2.81)
AKI 14 days after starting treatment	13 (12.0)	9 (10.6)	1.14 (0.46-2.81)

Aminoglycoside versus carbapenem or piperacillin/tazobactam treatment for bloodstream infections of urinary source caused by Gram-negative ESBL-producing Enterobacteriaceae

- Etude rétrospective de 193 patients, ITU (PNA, urosepsis +/bactériémie) à E-BLSE
- Aminoside (n=108) vs carbapénème ou pipéra/tazo (n=85)
- Critères de jugement: mortalité à J30, Sce créat (IRA à J14)
- L'âge moyen était de 79,3 ans

Outcome	Aminoglycoside (N=108), n (%)		Non-adjusted OR (95% CI)
30 day mortality 30 day mortality or treatment	14 (13.0) 26 (24.1)	18 (21.2) 22 (25.9)	0.55 (0.26-1.19) 0.91 (0.47-1.75)
switch Recurrence of bacteriuria	22 (48.9)	17 (44.7)	1.18 (0.50-2.81)
AKI 14 days after starting treatment	13 (12.0)	9 (10.6)	1.14 (0.46–2.81)

Figure 2. Primary and secondary efficacy outcomes comparing an aminoglycoside with a carbapenem or piperacillin/tazobactam, analysed according to type of bacteria (*E. coli* versus non-*E. coli*).

Once-Daily Plazomicin for Complicated Urinary Tract Infections

- (EPIC): Essai randomisé (1:1), multi-centrique, multi-national
- 609 patients IU compliquées (PNA ++) E-BLSE
- 191 Plazomicine IV (15 mg/kg/j, 1x/j) ou 197 méropéneme (1 g/8h), au moins 4 jours de traitement IV, (7 à 10 jrs)
- Guérison clinique et éradication microbio :(82,4 % vs 75,0 %)
- Plazomicine non inférieur au méropéneme
- Augmentation de créat (≥ 40 μmol/l): 7% (plazomicine) vs et 4 % (méro)

Once-Daily Plazomicin for Complicated Urinary Tract Infections

Time of Assessment and End Point	Plazomicin (N = 191)	Meropenem (N = 197)	Difference (95% CI)†
	number ((percent)	percentage points
Late follow-up:			
Composite cure	147 (77.0)	119 (60.4)	16.6 (7.0 to 25.7)
Sustained clinical cure§	169 (88.5)	168 (85.3)	3.2 (-4.0 to 10.3)
Sustained eradication¶	161 (84.3)	128 (65.0)	19.3 (10.4 to 27.9)
Clinical relapse	3 (1.6)	14 (7.1)	Not calculated
Microbiologic recurrence	7 (3.7)	16 (8.1)	Not calculated

Fréquence des récidives cliniques et microbiologiques moindre avec la plazomicine

Recommandations Aminosides / IUc à E-BLSE

PNA et IUc à E-BLSE	HAS 2019	IDSA 2021	ESCMID 2022
Aminosides	Oui	-	Oui
	 . Amikacine ou gentamicine ou tobra . PNA simple . Durée de 5 jours . A éviter en cas d'IR 		. Sans signes de gravité . Short durations . Conditional reco for use
			(moderate certainty of evidence)

Fosfomycine

Fosfomycine orale

Open Forum Infectious Diseases

MAJOR ARTICLE

Fosfomycin vs Ertapenem for Outpatient Treatment of Complicated Urinary Tract Infections: A Multicenter, Retrospective Cohort Study

- Etude de cohorte rétrospective multicentrique (3 hôpitaux)
- 322 patients, IUc +++ E. coli BLSE traités (relais) avec de la fosfomycine orale en ambulatoire ou de l'ertapénème
- Entre janvier 2018 et septembre 2020
- Evaluation: résolution des symptômes cliniques J30 après le diagnostic
- Tt de relais : fosfomycine (n = 110) ou ertapénème (n = 212)

Fosfomycin vs Ertapenem for Outpatient Treatment of Complicated Urinary Tract Infections: A Multicenter, Retrospective Cohort Study

		Fosfomycin (n = 110)	Ertapenem (n = 212)	PValue
Gender	Female	63 (57)	125 (59)	.8
	Male	47 (43)	87 (41)	
Age, mean ± SD,	у	52.9 ± 15.9	55.2 ± 16.8	.2
:UTI type				
Bladder cathete	er at diagnosis	27 (24)	31 (15)	.03
Pyelonephritis,	no PCNT	48 (44)	139 (66)	<.00
PCNT		15 (14)	32 (15)	.7
Cystitis with ne	phrolithiasis	5 (5)	1 (<1)	.02
Other urinary o	bstruction ^a	11 (10)	5 (2)	.00
Other cUTI ^b		4 (4)	4 (2)	.3

Fosfomycin vs Ertapenem for Outpatient Treatment of Complicated Urinary Tract Infections: A Multicenter, Retrospective Cohort Study

	Fosfomycin (n = 110), No. (%)	Ertapenem (n = 212), No. (%)	PValue
Clinical success at 30 d by cUTI type (primary end point)*	72 (65.4)	157 (74.1)	.1
Bladder catheter at diagnosis	16 (59.3)	21 (67.7)	.1
Pyelonephritis, no PCNT	33 (68.8)	110 (79.1)	.1
PCNT	8 (53.3)	19 (57.6)	.8
Other cUTI	15 (75)	7 (70)	.9

Les résultats de la fosfomycine étaient similaires <u>quelle que soit</u>

- . la durée du traitement initial par voie IV
- . ou l'intervalle de dosage de la fosfomycine (1/ j, /2jrs, /3jrs)

OXFORD

Fosfomycin vs Ertapenem for Outpatient Treatment of Complicated Urinary Tract Infections: A Multicenter, Retrospective Cohort Study

	Fosfomycin (n = 110), No. (%)	Ertapenem (n = 212), No. (%)	PValue
Clinical success at 30 d by cUTI type (primary end point)*	72 (65.4)	157 (74.1)	.1
Bladder catheter at diagnosis	16 (59.3)	21 (67.7)	.1
Pyelonephritis, no PCNT	33 (68.8)	110 (79.1)	.1
PCNT	8 (53.3)	19 (57.6)	.8
Other cUTI	15 (75)	7 (70)	.9
PCNT	8 (53.3)	19 (57.6)	

Table 5. Lengths of Therapy and Hospitalization

	Fosfomycin (n = 110)	Ertapenem (n = 212)	<i>P</i> Value			
Average lengths of treatment and hospitalization						
Length of inpatient stay	4.3 ± 3.8	5.7 ± 3.9	.002			
Duration of inpa- tient IV therapy	3.3 ± 2.1	4.7 ± 3.3	<.0001			
Duration of therapy postdischarge	5.3 ± 4.1	7.8 ± 8.3	.003			
Total duration of IV therapy	3.3 ± 2.1	12.4 ± 8.9	<.0001			
Total duration of antibiotic therapy	8.6 ± 4.4	12.4 ± 9.8	<.0001			

La durée moindre +++

Durations are reported as mean \pm SD in days.

Abbreviation: IV, intravenous.

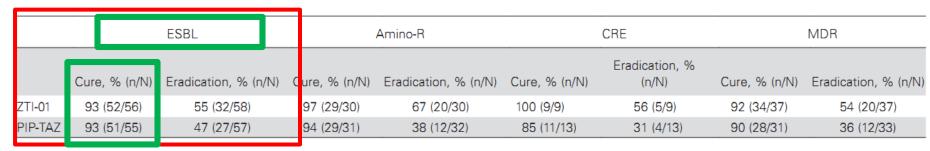
Wald-Dickler N, et al. Open Forum Infectious Diseases 2022

Fosfomycine IV

Clinical Infectious Diseases

MAJOR ARTICLE

Fosfomycin for Injection (ZTI-01) Versus Piperacillintazobactam for the Treatment of Complicated Urinary Tract Infection Including Acute Pyelonephritis: ZEUS, A Phase 2/3 Randomized Trial


- Essai Zeus : Adultes hospitalisés pour IUc (PNA) suspectés ou confirmés microbiologiquement randomisés 1:1
- ZTI-01 (Fosfomycine IV) 6 g/8 h ou 4,5 g/8 h de PIP-TAZ IV x 7 jours (pas de relai par voie orale); si bactériémie durée jusqu'à 14 jours
- 362 patients randomisés, <u>184</u> (ZTI-01) et <u>178</u> (PIP-TAZ)

Fosfomycin for Injection (ZTI-01) Versus Piperacillintazobactam for the Treatment of Complicated Urinary Tract Infection Including Acute Pyelonephritis: ZEUS, A Phase 2/3 Randomized Trial

Table 4. Clinical and Microbiologic Outcomes Among Patients With Baseline Pathogens Demonstrating Phenotypic Resistance Characteristics (Test of Cure, Microbiologic Modified Intent-to-Treat) [9]

- Taux de guérison clinique étaient élevés et similaires (90,8 % vs 91,6 %)
- Bonne tolérance : hypokaliémie et l'élévation des transaminases, étaient légers et transitoires

- Essai clq randomisé, 22 hôpitaux en Espagne, 2014-2018
- 161 patients <u>IU bactériémique à E. coli BMR</u>, randomisés 1:1
- 70 <u>fosfomycine</u> IV 4 g/6h vs 73 <u>ceftriaxone ou meropeneme</u> (efficacité clq et microbio 7 jrs après la fin du tt, marge de non infériorité de 7%)

Original Investigation | Infectious Diseases

Effectiveness of Fosfomycin for the Treatment of Multidrug-Resistant Escherichia coli Bacteremic Urinary Tract Infections

A Randomized Clinical Trial

Jesús Sojo-Dorado, MD, PhD; Inmaculada López-Hernández, MD, PhD; Clara Rosso-Fernandez, MD, PhD; Isabel M. Morales, MD, PhD; Zaira R. Palacios-Baena, MD, PhD; PhD; Clara Rosso-Fernandez, MD, PhD; Isabel M. Morales, MD, PhD; Inmaculada López-Hernández, MD, PhD; Clara Rosso-Fernandez, MD, PhD; Isabel M. Morales, MD, PhD; Inmaculada López-Hernández, MD, PhD; Clara Rosso-Fernandez, MD, PhD; Isabel M. Morales, MD, PhD; Inmaculada López-Hernández, MD, PhD; Clara Rosso-Fernandez, MD, PhD; Isabel M. Morales, MD, PhD; Isabel M. Morales,

	Patients, No./total No. (%)			
	Receiving fosfomycin	Receiving comparator	Risk difference (1-sided 95% CI) ^a	P value, 1-sided
CMC at TOC among MITT (measures of				
All patients	48/70 (68.6)	57/73 (78.0)	-9.4 (-21.5 to ∞)	.10
Patients with ceftriaxone-susceptible isolates ^b	25/31 (80.6)	27/31 (87.0)	-6.4 (-21.7 to ∞)	.24
Patients with ceftriaxone-resistant isolates ^b	23/39 (59.0) 30/42 (71.4)		-12.4 (-29.8 to ∞)	.12
Reasons for not reaching CMC at TOC a				
Clinical or microbiological failure				
All patients	10/70 (14.3)	14/73 (19.7)	-5.4 (-∞ to 4.9)	.19
Patients with ceftriaxone- susceptible isolates ^b	3/31 (9.7)	4/31 (12.9)	-3.2 (-∞ to 10.0)	.34
Patients with ceftriaxone-resistant isolates ^b	7/39 (17.9)	10/42 (23.8)	-8.9 (-∞ to 6.9)	.25
Other reasons				
Withdrawn because of adverse 6/70 (8.5 events		0/73 (0)	8.5 (-∞ to 13.9)	.006
Missed assessment at TOC	3/70 (4.2)	2/73 (2.7)	1.5 (-∞ to 6.5)	.31
TOC assessed but urine culture at TOC not available	3/70 (4.2)	0/73 (0) ^d	4.2 (-∞ to 8.1)	.03

. Efficacité clq et microbio +++

. Effets indésirables imposant

l'arret : 8,5% vs 0

JAMA Network Open. 2022;5(1):e2137277. doi:10.1001/jamanetworkopen.2021.37277

Original Investigation | Infectious Diseases

Effectiveness of Fosfomycin for the Treatment of Multidrug-Resistant Escherichia coli Bacteremic Urinary Tract Infections

A Randomized Clinical Trial

Jesús Sojo-Dorado, MD, PhD; Inmaculada López-Hernández, MD, PhD; Clara Rosso-Fernandez, MD, PhD; Isabel M. Morales, MD, PhD; Zaira R. Palacios-Baena, MD, PhD; Clara Rosso-Fernandez, MD, PhD; Isabel M. Morales, MD, PhD; Inmaculada López-Hernández, MD, PhD; Clara Rosso-Fernandez, MD, PhD; Isabel M. Morales, MD, PhD; Isabel M. Morales, MD, PhD; Inmaculada López-Hernández, MD, PhD; Clara Rosso-Fernandez, MD, PhD; Isabel M. Morales, MD, PhD; MD

	Patients, No./tota	al No. (%)		
	Receiving fosfomycin	Receiving comparator	Risk difference (1-sided 95% CI) ^a	P value, 1-sided
CMC at TOC among MITT (measures of				
All patients	48/70 (68.6)	57/73 (78.0)	-9.4 (-21.5 to ∞)	.10
Patients with ceftriaxone-susceptible isolates ^b	25/31 (80.6)	27/31 (87.0)	-6.4 (-21.7 to ∞)	.24
Patients with ceftriaxone-resistant isolates ^b	23/39 (59.0)	30/42 (71.4)	-12.4 (-29.8 to ∞)	.12
Reasons for not reaching CMC at TOC a	mong MITT (measu	res of failure)		
Clinical or microbiological failure				
All patients	10/70 (14.3)	14/73 (19.7)	-5.4 (-∞ to 4.9)	.19
Patients with ceftriaxone- susceptible isolates ^b	3/31 (9.7)	4/31 (12.9)	-3.2 (-∞ to 10.0)	.34
Patients with ceftriaxone-resistant isolates ^b	7/39 (17.9)	10/42 (23.8)	-8.9 (-∞ to 6.9)	.25
Other reasons				
Withdrawn because of adverse events	6/70 (8.5) ^c	0/73 (0)	8.5 (−∞ to 13.9)	.006
Missed assessment at TOC	3/70 (4.2)	2/73 (2.7)	1.5 (-∞ to 6.5)	.31
TOC assessed but urine culture at TOC not available	3/70 (4.2)	0/73 (0) ^d	4.2 (-∞ to 8.1)	.03

. Efficacité clq et microbio +++

. Effets indésirables imposant

l'arret : 8,5% vs 0

Non infériorité <u>non</u> démontrée

Fosfomycine pour des patients ciblés

JAMA Network Open. 2022;5(1):e2137277. doi:10.1001/jamanetworkopen.2021.37277

Original Investigation | Infectious Diseases

Effectiveness of Fosfomycin for the Treatment of Multidrug-Resistant Escherichia coli Bacteremic Urinary Tract Infections

A Randomized Clinical Trial

Jesús Sojo-Dorado, MD, PhD; Inmaculada López-Hernández, MD, PhD; Clara Rosso-Fernandez, MD, PhD; Isabel M. Morales, MD, PhD; Zaira R. Palacios-Baena, MD, PhD; PhD; Clara Rosso-Fernandez, MD, PhD; Isabel M. Morales, MD, PhD; Zaira R. Palacios-Baena, MD, PhD; Clara Rosso-Fernandez, MD, PhD; Isabel M. Morales, MD, PhD; Zaira R. Palacios-Baena, MD, PhD; Clara Rosso-Fernandez, MD, PhD; Isabel M. Morales, MD, PhD; Zaira R. Palacios-Baena, MD, PhD; Clara Rosso-Fernandez, MD, PhD; Isabel M. Morales, MD, PhD; Zaira R. Palacios-Baena, MD, PhD; Clara Rosso-Fernandez, MD, PhD; Isabel M. Morales, MD, PhD; Zaira R. Palacios-Baena, MD, PhD; Clara Rosso-Fernandez, MD, PhD; Isabel M. Morales, MD, PhD; Zaira R. Palacios-Baena, M

Une analyse des 38 patients ayant eu un prélèvement rectal, une colonisation par BGN résistant au C3G ou au méropénème était de:

- 0/21 patients fosfomycine
- 4/17 patients comparateur (p=0,01)

Recommandations Fosfomycine / IUc E-BLSE

PNA et IUc à E-BLSE	HAS 2019	IDSA 2021	ESCMID 2022
Fosfomycine orale	NON	NON	NON
Fosfomycine IV	-	-	OUI
			Sans signes de gravité
			(strong reco for use, high certainty of evidence)

IUc/PNA à E-BLSE Carbapénèmes, What else?

Alternatives aux carbapénèmes IUc/PNA à E-BLSE

- 1^{er} choix : cotrimoxazole
- 2^{ème} choix : ciprofloxacine, lévofloxacine, ofloxacine, par voie orale

- 3^{ème} choix : . amoxicilline-acide clavulanique
 ou

 pipéracilline-tazobactam ; PK/PD+++
- 4ème choix : Amikacine ou gentamicine (PNA simple, 5 jrs)

Alternatives aux carbapénèmes IUc/PNA à E-BLSE

- 1^{er} choix : cotrimoxazole
- 2^{ème} choix : ciprofloxacine, lévofloxacine, ofloxacine, par voie orale
- 3^{ème} choix : céfoxitine (*E. coli-*BLSE), ou témocilline

```
PK/PD+++
```

- 3^{ème} choix : . amoxicilline-acide clavulanique)
 ou
 . pipéracilline-tazobactam ; PK/PD+++
- 4ème choix : Amikacine ou gentamicine (PNA simple, 5 jrs)
 ou
 Fosfomycine IV

La conformité de l'antibiothérapie dans les infections urinaires à entérobactéries R aux C3G

- Etude rétrospective, 2022, concordance avec recos STPI 2018, HAS de 2019
- 98 patients Hsés pour IU à entérobactéries: PNA 89 (90,8%) et IUM 9 (9,1%)
- 29 (29,5%) étaient à *Entérobactéries* résistantes au C3G
- 16/29 cas (55%): non respect de l'ordre hiérarchique dans le choix de l'ATB

ATBs	TMP-SMX	Cipro	AAC	Piper/taz	Amikacine	Pénèmes
Germe sensible	Non testé :	2	2 (6,9%)	15	23	27
N (%)	20 (69%)	(6,9%)		(51,7%)	(79,3%)	(93%)
	3/9 (33,3%)					
Tt prescrit (N)	0	0	2	7	7	12

• 12/29 tt par pénème : 10 S à amikacine, 3 S à pip/tazo (non disponible),

TMP-SMX non testé dans 10 cas !!

Conclusion

- Infections urinaires non sévères à E-BLSE :
 - . Alternatives aux carbapénèmes +++
 - . Optimisation de la PK/PD ++
 - . Hiérarchie
- Obstacles +++

Une tique de bon usage, d'épargne, Antibiotic stewardship,...